Algebraic Bethe ansatz for the nonlinear Schrodinger model. II. Mixed fermion and boson fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 212399
(http://iopscience.iop.org/0305-4470/21/10/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:36

Please note that terms and conditions apply.

Algebraic Bethe ansatz for the non-linear Schrödinger model: II. Mixed fermion and boson fields

Y K Zhou
Center of Theoretical Physics, CCAST (World Laboratory), Beijing, People's Republic of China and Institute of Modern Physics, Xibei University, Xian, People's Republic of China

Received 23 September 1987

Abstract

The Bethe ansatz equations for a mixture of species of fermions and bosons in one dimension, interacting with a repulsive delta potential, are obtained. It is shown that the matrix periodic boundary conditions of the system can be obtained from those of a fermion or boson system. Finally, the extension of these results to the non-linear Schrödinger model with a supermatrix is made.

1. Introduction

We consider a one-dimensional N -body system with a repulsive delta potential whose Hamiltonian is

$$
\begin{equation*}
H=\int \mathrm{d} x\left[\left(\mathrm{~d} q^{+} / \mathrm{d} x\right)(\mathrm{d} q / \mathrm{d} x)+c: q^{+} q q^{+} q:\right] \tag{1}
\end{equation*}
$$

where q is a supermatrix and has the structure $(m, n) \times(k, 0)$, i.e. $q \sim(m, n) \times(k, 0)$. However, there exist some particularly interesting cases: the model (1) with $q \sim$ $(1,0) \times(1,0)$ was studied by Lieb and Liniger (1963), Faddeev (1981) and Thacker (1981), the model with $q \sim(2,0) \times(0,1)$ was studied by Yang (1967), and the one with $q \sim(m \geqslant 2,0) \times(0,1)$ was studied by Sutherland (1968) and Zhou and Zhao (1986). Yang reduced the problem to a matrix problem and applied the second Bethe ansatz (BA) to derive the BA equations. The matrix periodic boundary conditions (PBC) for the model (1) with $q \sim(m, 0) \times(1,0)$ and $(0, m)=(1,0)$ were obtained and the relationship between them was discussed by Zhou (1988). The model (1) with $q \sim(1,2) \times(1,0)$, i.e. a mixture of two species of fermions and one species of bosons, was studied by Lai and Yang (1971) and that with the general case $q \sim(m, n) \times(k, 0)$ was studied by Fan et al (1986). However, the bA equations derived by Fan et al (1986) cannot be directly reduced to those in Lai and Yang's work (1971) as $m=1, n=2$ and $k=1$. Both $q \sim(m, n) \times(1,0)$ and $(n, m) \times(0,1)$ represent a mixture of m species of bosons and n species of fermions. The purpose of this paper, therefore, is to derive the ba equations given by Lai and Yang (1971) and further derive the ba equations for $q \sim(m, n) \times(1,0), q \sim(n, m) \times(1,0)$ and $q \sim(m, n) \times(k, 0)$ by using the quantum inverse scattering method (QISM).

2. The matrix PBC

In this paper, we approach the problem by studying the model (1) with $q \sim$ $(m+n, 0) \times(1,0)$ and $(0, m+n) \times(1,0)$ instead of $q \sim(m, n) \times(1,0)$ and $(n, m) \times(1,0)$ respectively from the start. $q \sim(m+n, 0) \times(1,0)$ and $(0, m+n) \times(1,0)$ represent a system having $m+n$ species of bosons ($p=1$) and fermions ($p=-1$) respectively. The matrix PBC are (Zhou 1988)

$$
\begin{align*}
& t\left(\lambda_{j}, p\right)_{m+n} f_{m+n}=\nu\left(\lambda_{j}, p, R_{1}\right) f_{m+n} \\
& t(\lambda, p)_{m+n}=\operatorname{Tr}\left(L\left(\lambda-\lambda_{N}\right)_{m+n} \ldots L\left(\lambda-\lambda_{1}\right)_{m+n}\right) \\
& L\left(\lambda-\lambda_{j}\right)_{m+n}=\alpha\left(\lambda-\lambda_{j}\right)+\beta\left(\lambda-\lambda_{j}\right) P_{m+n}^{j} \\
& \beta\left(\lambda-\lambda_{j}\right)=1-\alpha\left(\lambda-\lambda_{j}\right)=(-\mathrm{i} p c) /\left(\lambda-\lambda_{j}-\mathrm{i} p c\right) \tag{2}
\end{align*}
$$

where $L\left(\lambda-\lambda_{j}\right)_{m+n}$ can be considered as the transfer matrix at site j of a generalised Heisenberg ferromagnetic chain with dynamical variable $e_{a b}(j)$ and auxiliary variable $e_{b a}(m+n)$. The permutation operator P_{m+n}^{j} is

$$
P_{m+n}^{j}=e_{a b}(j) e_{b a}(m+n)
$$

where the double indices a and b mean summations over $1,2, \ldots, m+n .\left(e_{a b}\right)_{c d}=$ $\delta_{a c} \delta_{b d}$. The eigenvalue $\nu\left(\lambda_{j}, p, R_{1}\right)$ is

$$
\begin{equation*}
\nu\left(\lambda_{j}, p, R_{1}\right)=\exp \left(-2 \mathrm{i} \lambda_{j} L\right) \prod_{i \neq j}^{N} \frac{\lambda_{j}-\lambda_{i}+\mathrm{i} c}{\lambda_{j}-\lambda_{i}-\mathrm{i} p c} \tag{3}
\end{equation*}
$$

where the λ are the momenta of N particles, $p=1$ for bosons and $p=-1$ for fermions. For a system having $m+n$ species of particles with the particle number content $N-M_{1}$, $M_{1}-M_{2}, \ldots, M_{m+n-2}-M_{m+n-1}, M_{m+n-1}$, equation (2) has the symmetry $R_{1}=$ [$N-M_{1}, M_{1}-M_{2}, \ldots, M_{m+n-1}$], which is an irreducible representation of the permutation group S_{N}.

By using QISM equation (2) can be solved to derive the BA equations for fermions $p=-1$ or bosons $p=1$ (Zhou 1988). Here equation (2), however, is first reduced to another matrix equation of smaller dimension for $R_{2}=\left[M_{m}-M_{m+1}, \ldots, M_{m+n-1}\right]$

$$
\begin{align*}
& t\left(\lambda_{j}^{(m)}, p\right)_{n} f_{n}=\nu\left(\lambda_{j}^{(m)}, p, R_{2}\right)_{n} f_{n} \\
& t\left(\lambda^{(m)}, p\right)_{n}=\operatorname{Tr}\left(L\left(\lambda^{(m)}-\lambda_{M_{m}}^{(m)}\right)_{n} \ldots L\left(\lambda^{(m)}-\lambda_{1}^{(m)}\right)_{n}\right) \tag{4}
\end{align*}
$$

where $L\left(\lambda^{(m)}-\lambda_{j}^{(m)}\right)_{n}$ is $L\left(\lambda-\lambda_{j}\right)_{m+n}$ with P_{n}^{j} and $\lambda^{(m)}-\lambda_{j}^{(m)}$ replacing P_{m+n}^{j} and $\lambda-\lambda_{j}$ respectively, and P_{n}^{j} is given by

$$
P_{n}^{j}=e_{c d}(h) e_{d c}(n)
$$

where the double indices d and c mean summations over $1,2, \ldots, n$. Equation (4) is identical in form to the original equation (2). However, equation (4) is that for the system having n species of particles with the particle number content M_{m} $M_{m+1}, \ldots, M_{m+n-1}$. The relationship between equation (2) for bosons $p=1$ and that for fermions $p=-1$ with the same species content has been discussed by Zhou (1988) and we have

$$
\begin{equation*}
\nu\left(\lambda_{j}^{(m)},-p, R_{2}\right)_{n}=\nu\left(\lambda_{j}^{(m)}, p, R_{2}^{*}\right)_{n} \prod_{i \neq j}^{M_{m}} \frac{\lambda_{j}^{(m)}-\lambda_{i}^{(m)}-\mathrm{i} p c}{\lambda_{j}^{(m)}-\lambda_{i}^{(m)}+\mathrm{i} p c} \tag{5}
\end{equation*}
$$

where R_{2}^{*} is a conjugate representation of R_{2}. If R_{2} represents a boson system with n species of particles then R_{2}^{*} describes a fermion system with the same species content
and vice versa. Hence we may consider that the $\nu\left(\lambda_{j}^{(m)}, p, R_{2}\right)$ is the eigenvalue of the equation (4) for p-particles and $\nu\left(\lambda_{j}^{(m)}, p, R_{2}^{*}\right)$ is that for $-p$-particles where the p-particles ($-p$-particles) represent the bosons (fermions) and the fermions (bosons) for $p=1$ and -1 respectively. Using equation (5) equation (4) for R_{2}^{*} can be written as

$$
\begin{equation*}
t\left(\lambda_{j}^{(m)},-p\right)_{n} f_{n}=\nu\left(\lambda_{j}^{(m)},-p, R_{2}\right)_{n} f_{n} . \tag{6}
\end{equation*}
$$

Equation (6) is equation (4) with $-p$ replacing p and can be solved also by using the pISM. The final results obtained are those for a mixture system having m species of p-particles with the particle number content $N-M_{1}, \ldots, M_{m-1}-M_{n}$ and n species of $-p$-particles with the particle number content $M_{m}-M_{m+1}, \ldots, M_{m+n-1}$.

Identically we may solve the equation (2) from the start by imposing on f_{m+n} the symmetry $R=\left[N-M_{1}, \ldots, M_{m-1}-M_{m}, R_{2}^{*}\right]$ and $R_{2}=\left[M_{m}-M_{m+1}, \ldots, M_{m+n-1}\right]$ as shown in figure 1. The condition $n \leqslant M_{m-1}-M_{m}$, however, must be held.

Figure 1. Diagram of the tableau represented by R. The p-particles ($-p$-particles) represent bosons (fermions) and fermions (bosons) for $p=1$ and $p=-1$ respectively.

3. The ba equations for $q \sim(1,2) \times(1,0)$

Lai and Yang considered a one-dimensional N-body QNSM for a mixture system with m_{1} fermions of species $1, m_{2}$ fermions of species 2 and m_{b} bosons, where $N=$ $m_{1}+m_{2}+m_{b}$ and $p=-1, n=1, N-M_{1}=m_{1}, M_{1}-M_{2}=m_{2}$ and $M_{2}=m_{b}$ according to the discussion in the last section. The ba equations for the mixture system can be obtained by solving equation (2) for $R=\left[m_{1}, m_{2}, 1^{m}\right]$. The calculation is straightforward and the results are

$$
\begin{aligned}
& \exp \left(2 \mathrm{i} \lambda_{j} L\right)=\prod_{i}^{M_{1}} \alpha\left(\lambda_{i}^{(1)}-\lambda_{j}\right) \quad j=1,2, \ldots, N . \\
& \prod_{i}^{N} \alpha\left(\lambda_{j}^{(1)}-\lambda_{i}\right)=-\prod_{i}^{M_{1}} \frac{\alpha\left(\lambda_{j}^{(1)}-\lambda_{i}^{(1)}\right)}{\alpha\left(\lambda_{i}^{(1)}-\lambda_{j}^{(1)}\right)} \prod_{i}^{M_{2}} \alpha\left(\lambda_{i}^{(2)}-\lambda_{j}^{(1)}\right) \quad j=1,2, \ldots, M_{1} . \\
& \prod_{i}^{M_{1}} \alpha\left(\lambda_{j}^{(2)}-\lambda_{i}^{(1)}\right)=1 \quad j=1,2, \ldots, M_{2} .
\end{aligned}
$$

Substituting $\lambda_{j}^{(1)}=\Lambda_{j}-\frac{1}{2} \mathrm{i} c$ and $\lambda_{j}^{(2)}=A_{j}-\mathrm{i} c$ into the ba equations, we will obtain the results of Lai and Yang (1971).

4. The ba equations for $q \sim(m, n) \times(1,0)$ and $(n, m) \times(1,0)$

By using the pism the equation (2) for R shown in figure 1 can be solved to derive the ba equations. Similar calculations can be found in the papers given by Kulish and Reshetikhin (1981) and Tsvelick and Wiegmann (1983). It is straightforward but rather lengthy. So we write only the final results in the following:

$$
\begin{align*}
& \exp \left(2 \mathrm{i} \lambda_{j} L\right)=\prod_{i \neq j}^{N} \frac{\lambda_{j}-\lambda_{i}+\mathrm{i} c}{\lambda_{j}-\lambda_{i}-\mathrm{i} p} \prod_{i}^{M_{1}} \alpha\left(\lambda_{i}^{(1)}-\lambda_{j}\right) \quad j=1,2, \ldots, N \tag{7}\\
& \prod_{i}^{N} \alpha\left(\lambda_{j}^{(1)}-\lambda_{i}\right)=-\prod_{i} \frac{\alpha\left(\lambda_{j}^{(1)}-\lambda_{i}^{(1)}\right)}{\alpha\left(\lambda_{i}^{(1)}-\lambda_{j}^{(1)}\right)} \prod_{i}^{M_{2}} \alpha\left(\lambda_{i}^{(2)}-\lambda_{j}^{(1)}\right) \quad j=1,2, \ldots, M_{1} \tag{8}\\
& \prod_{i}^{M_{r-1}} \alpha\left(\lambda_{j}^{(r)}-\lambda_{i}^{(r-1)}\right)=-\prod_{i}^{M_{r}} \frac{\alpha\left(\lambda_{j}^{(r)}-\lambda_{i}^{(r)}\right)}{\alpha\left(\lambda_{i}^{(r)}-\lambda_{j}^{(r)}\right)} \prod_{i}^{M_{r+1}} \alpha\left(\lambda_{i}^{(r+1)}-\lambda_{j}^{(r)}\right) \\
& j=1,2, \ldots, M_{r} \quad r=2,3, \ldots, m=1 \tag{9}\\
& M_{i m}^{M_{m-1}} \alpha\left(\lambda_{j}^{(m)}-\lambda_{i}^{(m-1)}\right)=\prod_{i}^{M_{m+1}} \alpha\left(\lambda_{j}^{(m)}-\lambda_{i}^{(m+1)}\right) \quad j=1,2, \ldots, M_{m} \tag{10}\\
& \prod_{i}^{M_{s-1}} \alpha\left(\lambda_{i}^{(s-1)}-\lambda_{j}^{(s)}\right)=-\prod_{i}^{M_{2}} \frac{\alpha\left(\lambda_{i}^{(s)}-\lambda_{j}^{(s)}\right)}{\alpha\left(\lambda_{j}^{(s)}-\lambda_{i}^{(s)}\right)} \prod_{i}^{M_{s+1}} \alpha\left(\lambda_{j}^{(s)}-\lambda_{i}^{(s+1)}\right) \\
& \quad j=1,2, \ldots, M_{s} \quad s=m+1, \ldots, m+n-2 \tag{11}\\
& \prod_{i}^{M_{m+n-2}} \alpha\left(\lambda_{i}^{(m+n-2)}-\lambda_{j}^{(m+n-1)}\right)=-\prod_{i}^{M_{m+n-1}} \frac{\alpha\left(\lambda_{i}^{(m+n-1)}-\lambda_{j}^{(m+n-1)}\right)}{\alpha\left(\lambda_{j}^{(m+n-1)}-\lambda_{i}^{(m+n-1)}\right)} \\
& j=1,2, \ldots, M_{m+n-1} \tag{12}
\end{align*}
$$

where $n \leqslant M_{m-1}-M_{m}$. As $p=-1(=1)$ these are the bA equations for the mixture system having m species of fermions (bosons) with the particle number content $N-M_{1}$, $M_{1}-M_{2}, \ldots, M_{m-1}-M_{m}$ and n species of bosons (fermions) with the particle number content $M_{m}-M_{m+1}, \ldots, M_{m+n-2}-M_{m+n-1}, M_{m+n-1}$, i.e. for the QNSM with $q \sim$ $(n, m) \times(1,0)(q \sim(m, n) \times(1,0))$.

From the ba equations (7)-(12) one may go to the limit $N, M, L \rightarrow \infty$ proportionally and discuss the ground-state energy of the system. Details will be published elsewhere.

For $q \sim(1,0) \times(1,0),(0,2) \times(1,0),(0, m \geqslant 2) \times(1,0)$ and $(1,2) \times(1,0)$ our results (7)-(12) coincide with those given by Lieb and Liniger (1963), Yang (1967), Sutherland (1968) and Lai and Yang (1971). For $q \sim(m \geqslant 2,0) \times(1,0)$ the results (7)-(12) coincide with those given by Zhou (1988). Moreover, our method can be applied to the study of the QNSM with $q \sim(m, n) \times(k, 0)$.

5. The ba equations for $q \sim(m, n) \times(k, 0)$ and $(n, m) \times(k, 0)$

The QNSM with $q \sim(m, n) \times(k, 0)$ and $(n, m) \times(k, 0)$ have the form

$$
\begin{equation*}
H=\operatorname{Tr} \int \mathrm{d} x\left[\left(\mathrm{~d} q^{+} / \mathrm{d} x\right)(\mathrm{d} q / \mathrm{d} x)+c: q^{+} q q^{+} q:\right] \tag{13}
\end{equation*}
$$

In this section, we will generalise the matrix PBC (2) and (3) to that for $q \sim$ (m, n) $\times(k, 0)$ and ($n, m) \times(k, 0)$ and derive the BA equations for the model (13). First,
the matrix PBC for $q \sim(m+n, 0) \times(k, 0)$ and $(0, m+n) \times(k, 0)$ can be easily obtained by using the QISM and the results are

$$
\begin{equation*}
\nu\left(\lambda_{j}, p, R_{1}\right) \tilde{\nu}\left(\lambda_{j}, R^{\prime}\right)^{-1}=\exp \left(-2 \mathrm{i} \lambda_{j} L\right) \prod_{i \neq j}^{N} \frac{\lambda_{j}-\lambda_{i}+\mathrm{i} c}{\lambda_{j}-\lambda_{i}-\mathrm{i} p c} \tag{14}
\end{equation*}
$$

where $\tilde{\nu}\left(\lambda_{j}, R^{\prime}\right)$ is the eigenvalue of the following equation for $R^{\prime}=$ [$\left.N-N_{1}, N_{1}-N_{2}, \ldots, N_{k-1}\right]$:

$$
\begin{equation*}
\tilde{t}\left(\lambda_{j}\right)_{k} g_{k}=\tilde{\nu}\left(\lambda_{j}, R^{\prime}\right) g_{k} \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{t}(\lambda)_{k}=\operatorname{Tr}\left(L\left(\lambda_{N}-\lambda\right)_{k} \ldots L\left(\lambda_{1}-\lambda\right)_{k}\right) \\
& L\left(\lambda_{j}-\lambda\right)=a\left(\lambda_{j}-\lambda\right)+b\left(\lambda_{j}-\lambda\right) P_{k}^{j} \\
& b\left(\lambda_{j}-\lambda\right)=1-a\left(\lambda_{j}-\lambda\right)=(-\mathrm{ic}) /\left(\lambda_{j}-\lambda-\mathrm{i} c\right) .
\end{aligned}
$$

$\nu\left(\lambda_{j}, p, R_{1}\right)$ is given by equation (2) and $p=1$ for $q \sim(m+n, 0) \times(k, 0)$ and $p=-1$ for $q \sim(0, m+n) \times(k, 0)$. According to the discussion in $\S 2$, we can easily generalise the matrix $\operatorname{PBC}(14)$ to that with $p=1$ for $q \sim(m, n) \times(k, 0)$ and $p=-1$ for $q \sim(n, m) \times(k, 0)$, i.e. $\nu\left(\lambda_{j}, p\right)$ is given by equation (2) for R shown in figure 1 instead of $R_{1}=$ [$\left.N-M_{1}, \ldots, M_{m+n-2}-\boldsymbol{M}_{m+n-1}, M_{m+n-1}\right]$. So the bA equations are $\exp \left(2 \mathrm{i} \lambda_{j} L\right)=\prod_{i \neq j}^{N} \frac{\lambda_{j}-\lambda_{i}+\mathrm{i} c}{\lambda_{j}-\lambda_{i}-\mathrm{i} p c} \prod_{i}^{M_{1}} \alpha\left(\lambda_{i}^{(1)}-\lambda_{j}\right) \prod_{i}^{N_{1}} a\left(\lambda_{j}-\mu_{i}^{(1)}\right)^{-1} \quad j=1,2, \ldots, N$

$$
\begin{equation*}
\prod_{i}^{N} a\left(\lambda_{i}-\mu_{j}^{(1)}\right)=-\prod_{i}^{N_{1}} \frac{a\left(\mu_{i}^{(1)}-\mu_{j}^{(1)}\right)}{a\left(\mu_{j}^{(1)}-\mu_{i}^{(1)}\right)} \prod_{i}^{N_{2}} a\left(\mu_{j}^{(1)}-\mu_{i}^{(2)}\right) \quad j=1,2, \ldots, N_{1} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\prod_{i}^{N_{t-1}} a\left(\mu_{i}^{(t-1)}-\mu_{j}^{(t)}\right)=-\prod_{i}^{N_{i}} \frac{a\left(\mu_{i}^{(t)}-\mu_{j}^{(t)}\right)}{a\left(\mu_{j}^{(t)}-\mu_{i}^{(t)}\right)} \prod_{i}^{N_{t+1}} a\left(\mu_{j}^{(t)}-\mu_{i}^{(t+1)}\right) \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
j=1,2, \ldots, N_{t} \quad t=2,3, \ldots, k-2 \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\prod_{i}^{N_{k-2}} a\left(\mu_{i}^{(k-2)}-\mu_{j}^{(k-1)}\right)=-\prod_{i}^{N_{t-1}} \frac{a\left(\mu_{i}^{(k-1)}-\mu_{j}^{(k-1)}\right)}{a\left(\mu_{j}^{(k-1)}-\mu_{i}^{(k-1)}\right)} \quad j=1,2, \ldots, N_{k-1} \tag{19}
\end{equation*}
$$

and the equations (8)-(12).
For a special case with $p=1$ (see figure 1) our results coincide with those in the case studied by Fan et al (1986). The BA equations for the QNSM with $q \sim(1,2) \times(1,0)$ given by Lai and Yang (1971), however, are included in the results (8)-(12) and (16)-(19) with $p=-1$.

References

Faddeev L D 1981 Sov. Sci. Rev. Math. Phys. C 1107
Fan H T, Pu F C and Zhao B H 1986 Preprint ITP-SB-86.97
Kulish P P and Reshetikhin N 1981 Sov. Phys.-JETP 53108
Lai C K and Yang C N 1971 Phys. Rev. A 3393
Lieb E H and Liniger W 1963 Phys. Rev. 1301605
Sutherland B 1968 Phys. Rev. Lett. 2098
Thacker H B 1981 Rev. Mod. Phys. 53253
Tsvelick A M and Wiegmann P B 1983 Adv. Phys. 32453
Yang C N 1967 Phys. Rev. Lett. 191314
Zhou Y K 1988 J. Phys. A: Math. Gen. 212391
Zhou Y K and Zhao B H 1986 J. Grad. School USTC Acad. Sin. special issue, p 29 (in Chinese)

